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Outline

What are soft bosons? “Soft” = “low energy”

Soft Theorems (incl. sub-leading terms) – particle picture
Asymptotic space-time structure – field picture
Would like to unify these pictures – sub-leading terms
important!

Recent classical understanding – soft theorems come from
boundary terms (CD, J. Wilson-Gerow, PCE Stamp –
arXiv:2012.13356 [hep-th], to appear in JHEP.)

How is classical intuition reflected in quantum mechanical
computations?

What comes next? (If there is time I will speculate)



Soft Bosons

Soft particles are just particles with energy approaching zero
(λ→∞).

Depending on application, can mean strict lim|q|→0, or simply that
λ� {L}, or |q| � {E}.



The Soft Photon Theorem (see e.g. Weinberg, 1965)

N particles with momenta {pn} scatter into a set of M particles
with momenta {p′m}.

The amplitude is A({p′m}|{pn}).

Now consider the amplitude for the same process, but add to the
out state a photon with momentum q and polarization vector ε.
One finds that, the amplitude becomes approximately:(

S(0) + S(1)
)
A({p′m}|{pn}),

as |q| → 0. This is soft factorization!
Leading order is exact at tree level, S(1) gets loop corrections.



The Soft Photon Theorem

More concretely, we have

S(0,1) = Na

[
M∑

m=1

emSa(0,1)(q, x̂ ′m, p
′
m)−

N∑
n=1

enSa(0,1)(q, x̂n, pn)

]
,

where Na ∝ ε̄a is the “wavefunction” of the outgoing photon, the
em,n are the charges of the matter particles, and we have defined

Sa(0)(q, p) ≡ pa

q · p
∼ O(|q|−1)

Sa(1)(q, x̂ , p) ≡ i
qbĴ

ba

q · p
∼ O(1).

Here Ĵab ≡ pax̂b − x̂apb ≡ 2p[ax̂b] is the angular momentum
operator.



The Soft Graviton Theorem

Instead, add to the out state a graviton with momentum q and
polarization tensor ε. At tree level, the amplitude becomes:(

S(0) + S(1) + S(2)

)
A({p′m}|{pn})

near |q| = 0.

Note that in the gravitational case there are three “soft factors”
(e.g. Cachazo & Strominger arXiv:1404.4091).



The Soft Graviton Theorem

Once more,

S(0,1,2) = κNab

[
M∑

m=1

S ab
(0,1,2)(q, x̂

′
m, p

′
m)−

N∑
n=1

S ab
(0,1,2)(q, x̂n, pn)

]
,

in which κ ≡
√

8πG is the Newton coupling, Nab ∝ ε̄ab the
outgoing graviton “wavefunction,” and

S ab
(0)(q, p) ≡ papb

q · p

S ab
(1)(q, x̂ , p) ≡ i

qc Ĵ
c(apb)

q · p

S ab
(2)(q, x̂ , p) ≡ −1

2

qc Ĵ
acqd Ĵ

bd

q · p
,

where the parentheses around indices indicate symmetrization.



The Soft Theorems

Questions:

What to do with IR divergence in leading order terms, which
are ∝ 1/|q| ?

Why are there 3 soft factors for gravity, but only 2 in
QED?



IR divergences in QFT

Virtual bosons in amplitudes
can be soft too:

q

IR divergence in vertex when
|q| → 0, exponentiates and
sets probability for process to
zero (Bloch & Nordsieck,
Weinberg)

Two solutions:

Inclusive approach – also
sum up diagrams with
real soft radiation

Dressed state approach –
treat soft radiation as
part of IN/OUT states

IR divergences cancel, but
both approaches involve an
infinite number of real soft
bosons – non-perturbative?
Sub-leading effects?



Asymptotic Symmetries

Soft theorems related to gauge (diffeo) symmetry at null infinity.

Sketch taken from R. Penrose Collected

Works

Gauge: Aa → Aa +∇aΛ
Diffeo: xa → xa + ξa

At null infinity,

Λ(x)→ λ(θ, φ)

ξ : u → u + α(θ, φ)

u is time coordinate along null
infinity. α called
“supertranslation”



Asymptotic Symmetries

Soft theorems related to gauge (diffeo) symmetry at null infinity.

Sketch taken from R. Penrose Collected

Works

Charges Qλ, Qα generate
transformations λ(θ, φ), α(θ, φ).

Conservation of Qλ, Qα between
future and past null infinity
equivalent to leading order soft
theorems!

Dressed states are those with
Q̂|Ψ〉 = 0.

What about sub-leading terms?
Lots of work on e.g.
“superrotations,” but still
problematic.



Picturing the Soft Theorems

For small |q|,

q, ε
p′mp′1

p1 pn

≈

p′mp′1

p1 pn

× S

q, ε

How can we get factorization? When S depends only on data at
endpoints of worldlines!



Picturing the Soft Theorems

At the level of the action, matter couples to the fields via

Sint =

∫
d4x Aa(x)ja(x) =

∫
d4q

(2π)4
Aa(q)ja(−q)

OR

Sint = −1

2

∫
d4x hab(x)T ab(x) = −1

2

∫
d4q

(2π)4
hab(q)T ab(−q)

Aa or hab can be thought of as representing a real “soft boson” if
we take the momentum qa to be on-shell (q · q = 0), and of very
low frequency. The matter then couples to the soft fields via

ja(−q), T ab(−q)

with |q| small.



Electromagnetism

The conserved current for a particle with charge e coupled to the
Maxwell field, which follows a classical trajectory X a(s), is

ja(x) = e

∫ ∞
0

ds Ẋ a(s) δ(4)(x − X (s)),

s: the particle’s proper time, and Ẋ a(s) ≡ d
dsX

a(s).

In momentum space,

ja(q) = e

∫ ∞
0

ds Ẋ a(s) e iq·X (s).



Electromagnetism

ja(q) = e

∫ ∞
0

ds Ẋ a(s) e iq·X (s)

qaj
a(q) 6= 0! Let’s rewrite this:

ja(q) = e

∫
ds Ẋ a

(
1

iq · Ẋ

)
d

ds
e iq·X

Integrating by parts in s gives

ja(q) = −ie
∫

ds
d

ds

(
e iq·X

Ẋ a

q · Ẋ

)
+ ie

∫
ds e iq·X

d

ds

(
Ẋ a

q · Ẋ

)
.

Drop the first term!



Electromagnetism: Leading Order

Taylor expansion of phase,

ja(q) = ie

∫
ds

[ ∞∑
k=0

1

k!
(iq · X )k

]
d

ds

(
Ẋ a

q · Ẋ

)
≡
∞∑
k=0

ja(k)(q)

And we just look at the first term (k = 0):

ja(0)(q) = ie

∫
ds

d

ds

(
Ẋ a

q · Ẋ

)
= ie∆

(
Ẋ a

q · Ẋ

)
,

with ∆f (s) ≡ f (s →∞)− f (s → 0).



Electromagnetism: Leading Order

ja(0)(q) = ie

∫
ds

d

ds

(
Ẋ a

q · Ẋ

)
= ie∆

(
Ẋ a

q · Ẋ

)
Leading soft factor:

Sa(0)(q, p) ≡ pa

q · p

Current bdry. term is the soft factor:

i ja(0)(−q) = e∆Sa(0)(q,mẊ ).

The ∆ here even explains the relative minus sign between outgoing
and incoming particles in the soft theorem!



Electromagnetism: Sub-leading Order

ja(1)(q) = ie

∫
ds (iq · X )

d

ds

(
Ẋ a

q · Ẋ

)
Sub-leading soft factor:

Sa(1)(q, x̂ , p) ≡ i
qbĴ

ba

q · p

After more integration by parts...

Current bdry. term is the soft factor:

i ja(1)(−q) = e∆Sa(1)(q,X ,mẊ ).



Electromagnetism: (Sub)k-leading Order?

ja(k)(q) =
ie

k!

∫
ds (iq · X )k

d

ds

(
Ẋ a

q · Ẋ

)

=
(ik+1)e

k!

∫
ds

[
d

ds

(
(q · X )k

Ẋ a

q · Ẋ
− k(q · X )k−1X a

)

+ k(k − 1)(q · X )k−2(q · Ẋ )X a

]
“Factorization error” ∝ k(k − 1), vanishes at leading and
sub-leading order only ! → No further soft photon theorems!



Linearized Gravity

The gravitational current for a particle with charge mass m
following trajectory X a(s) is the stress tensor

T ab(x) = m

∫
ds Ẋ a(s)Ẋ b(s) δ(4)(x − X (s))

and, as in the electromagnetic case, we are interested in the
Fourier transform of this:

T ab(q) = m

∫
ds Ẋ a(s)Ẋ b(s) e iq·X (s)



Linearized Gravity

Just as before, int. by parts and drop problematic bdry. term,
giving

T ab(q) = im

∫
ds e iq·X

d

ds

(
Ẋ aẊ b

q · Ẋ

)
Expand as

T ab(q) = im

∫
ds

[ ∞∑
k=0

1

k!
(iq · X )k

]
d

ds

(
Ẋ aẊ b

q · Ẋ

)
≡

∞∑
k=0

T ab
(k)(q),



Linearized Gravity: Leading Order

The leading order term is again straightforward

T ab
(0)(q) = im

∫
ds

d

ds

(
Ẋ aẊ b

q · Ẋ

)
= im∆

(
Ẋ aẊ b

q · Ẋ

)

Recall

S ab
(0)(q, p) ≡ papb

q · p

Stress tensor bdry. term is the soft factor:

iT ab
(0)(−q) = ∆S ab

(0)(q,mẊ )

Leading order works just as in QED.



Linearized Gravity: Sub-Leading Order

T ab
(1)(q) = im

∫
ds (iq · X )

d

ds

(
Ẋ aẊ b

q · Ẋ

)
With Pa = mẊ a,

= ∆

(
qcJ

c(aPb)

q · P

)
−m

∫
ds X (aẌ b)

Recall

S ab
(1)(q, x̂ , p) ≡ i

qc Ĵ
c(apb)

q · p

Stress tensor bdry. term is NOT the soft factor:

iT ab
(1)(−q) 6= ∆S ab

(1)(q,X ,mẊ )

...Crap.



Linearized Gravity: Doesn’t Work?

What to make of −m
∫
ds X (aẌ b)?

Look at stress-energy conservation.
T ab
,a = 0 implies that this term vanishes on-shell (T not conserved

identically).

T ab
,a = −m

∫
ds Ẍ bδ(4)(x − X (s)) = 0

T ab
,a (q) = −m

∫
ds e iq·X Ẍ b = 0

Expand phase again. At sub-leading order get (qa arbitrary)

−imqa

∫
ds X aẌ b = 0

Remember this is linearized gravity!



Linearized Gravity: Sub-Leading Order

T ab
(1)(q) = im

∫
ds (iq · X )

d

ds

(
Ẋ aẊ b

q · Ẋ

)
With Pa = mẊ a,

= ∆

(
qcJ

c(aPb)

q · P

)
−m

∫
ds X (aẌ b)

Recall

S ab
(1)(q, x̂ , p) ≡ i

qc Ĵ
c(apb)

q · p

Stress tensor bdry. term IS ACTUALLY the soft factor:

iT ab
(1)(−q) = ∆S ab

(1)(q,X ,mẊ )

... plus a term which vanishes on-shell.



Linearized Gravity: Sub-Sub-Leading Order

T ab
(2)(q) =

im

2

∫
ds (iq · X )2

d

ds

(
Ẋ aẊ b

q · Ẋ

)
With Pa = mẊ a,

= − i

2
∆

(
qcJ

acqdJ
bd

q · P

)
+

im

2

∫
ds
[
X aX b(q · Ẍ ) + 2(q · X )X (aẌ b)

]
.

Recall

S ab
(2)(q, x̂ , p) ≡ −1

2

qc Ĵ
acqd Ĵ

bd

q · p

Stress tensor bdry. term is the soft factor:

iT ab
(2)(−q) = ∆S ab

(2)(q,X ,mẊ )

... plus a term which vanishes on-shell.



Linearized Gravity: (Sub)k-leading Order?

T ab
(k)(q) =

im

k!

∫
ds
[
(iq · X )k

] d

ds

(
Ẋ aẊ b

q · Ẋ

)

=
(ik+1)m

k!

∫
ds

[
d

ds

(
(q · X )k

Ẋ aẊ b

q · Ẋ

−k

2
(q · X )k−1

d

ds
(X aX b) +

k

2
X aX b d

ds
(q · X )k−1

)
+ k(q · X )k−1X (aẌ b) − 1

2
k(k − 1)X aX b(q · X )k−2(q · Ẍ )

− 1

2
k(k − 1)(k − 2)X aX b(q · Ẋ )2(q · X )k−3

]
“Factorization error” ∝ k(k − 1)(k − 2), nonzero after
sub-sub-leading order! → No further soft graviton theorems!



The Soft Theorems

Questions:

What to do with IR divergence in leading order terms, which
are ∝ 1/|q| ?

These are actually helpful. Used to cancel virtual divergences.

Why are there 3 soft factors for gravity, but only 2 in
QED?

Because there are exactly that many boundary terms in
the respective particle currents, and these dominate at
low |q|.

How does these being boundary terms imply that they
factorize quantum mechanically?



Factorization at the Quantum Level

Look at correlator in graviton background: 〈φ(x ′)φ(x)〉hab

Path integral representation:

i

∫ ∞
0

ds

∫ x ′

x
DX (s ′) e iS[X ]|s0+iκ

∫
T abhab|s0

∼ i

∫ ∞
0

ds

∫ x ′

x
DX (s ′) e iS[X ]|s0

[
iκ

∫
T abhab|s0

]
Up to sub-sub-leading order, T ab(x , x ′, ∂x , ∂x ′) → can pull out of
path integral! After LSZ, factors out of tree amplitudes.



Next Steps?

Use this framework to derive/verify loop corrections?

Go beyond linearized gravity?

Sub-leading terms are associated with boundary, are they
explained by asymptotic symmetries?

No IR divergences forcing us to use e.g. sub-leading dressed
states.



Thank you!

And remember: always keep boundary terms when you integrate by
parts!


